Respuesta :

The function is given as,

[tex]f(x)=\frac{1}{5-6x}[/tex]

Differentiating both sides with respect to 'x',

[tex]f^{\prime}(x)=\frac{d}{dx}(\frac{1}{5-6x})[/tex]

According to the reciprocal rule,

[tex]\frac{d}{dx}(\frac{1}{g(x)})=\frac{-g^{\prime}(x)}{g(x)^2}[/tex]

Comparing with the expression,

[tex]g(x)=5-6x[/tex]

The corresponding derivative is given by,

[tex]\begin{gathered} g^{\prime}(x)=\frac{d}{dx}(5-6x) \\ g^{\prime}(x)=\frac{d}{dx}(5)-6\cdot\frac{d}{dx}(x) \\ g^{\prime}(x)=0-6(1) \\ g^{\prime}(x)=-6 \end{gathered}[/tex]

Substitute the values in the formula,

[tex]\begin{gathered} \frac{d}{dx}(\frac{1}{5-6x})=\frac{-(-6)}{(5-6x)^2} \\ \frac{d}{dx}(\frac{1}{5-6x})=\frac{6}{(5-6x)^2} \end{gathered}[/tex]

So the derivative of the given function becomes,

[tex]f^{\prime}(x)=\frac{6}{(5-6x)^2}[/tex]

Thus, the derivative of the given function is obtained as,

[tex]f^{\prime}(x)=\frac{6}{(5-6x)^2}[/tex]