pls help i will give you a 5 star rating
+brainlyist+heart


typ of math order of operatons





pleassssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssse
help meeeeeeeeee

pls help i will give you a 5 star rating brainlyisthearttyp of math order of operatonspleassssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss class=

Respuesta :

                                           Question # 1

Given the expression

[tex]6^2\div \:3+\left(5+3\cdot \:2\right)-2^3[/tex]

Follow the PEMDAS order of operations

[tex]\mathrm{Calculate\:within\:parentheses}\:\left(5+3\cdot \:2\right)\::\quad 11[/tex]

[tex]=6^2\div \:3+11-2^3[/tex]

[tex]\mathrm{Calculate\:exponents}\:6^2\::\quad 36[/tex]

[tex]=36\div \:3+11-2^3[/tex]

[tex]\mathrm{Calculate\:exponents}\:2^3\::\quad 8[/tex]

[tex]=36\div \:3+11-8[/tex]

[tex]\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:36\div \:3\::\quad 12[/tex]

[tex]=12+11-8[/tex]

[tex]\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:12+11-8\::\quad 15[/tex]

[tex]=15[/tex]

Therefore,

[tex]6^2\div \:3+\left(5+3\cdot \:2\right)-2^3=15[/tex]

                                            Question # 2

Given the expression

[tex]\frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}[/tex]

as

[tex]4+3^2-\frac{15}{5}[/tex]

[tex]=4+9-\frac{15}{5}[/tex]      ∵[tex]3^2=9[/tex]

[tex]\mathrm{Add\:the\:numbers:}\:4+9=13[/tex]

[tex]=-\frac{15}{5}+13[/tex]

and

[tex]\left(2^4-5\cdot \:3\right)^2[/tex]

[tex]=\left(16-5\cdot \:3\right)^2[/tex]   ∵ [tex]2^4=16[/tex]

[tex]\mathrm{Multiply\:the\:numbers:}\:5\cdot \:3=15[/tex]

[tex]=\left(16-15\right)^2[/tex]

[tex]\mathrm{Subtract\:the\:numbers:}\:16-15=1[/tex]

[tex]=1^2[/tex]

[tex]\mathrm{Apply\:rule}\:1^a=1[/tex]

[tex]=1[/tex]

Thus the equation [tex]\frac{4+3^2-15\div 5}{\left(2^4-5\cdot \:3\right)^2}[/tex]  becomes

[tex]=\frac{-\frac{15}{5}+13}{1}[/tex]

[tex]\mathrm{Divide\:the\:numbers:}\:\frac{15}{5}=3[/tex]

[tex]=\frac{-3+13}{1}[/tex]

[tex]\mathrm{Apply\:rule}\:\frac{a}{1}=a[/tex]

[tex]=-3+13[/tex]

[tex]\mathrm{Add/Subtract\:the\:numbers:}\:-3+13=10[/tex]

[tex]=10[/tex]

Therefore,

[tex]\frac{4+3^2-\frac{15}{5}}{\left(2^4-5\cdot \:3\right)^2}=10[/tex]

                                                       Question # 3

Given the expression

[tex]ab-c^2+2b[/tex]

Putting a = 2, b = 4, and c = 1 in the expression

[tex]=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)[/tex]

Follow the PEMDAS order of operations

[tex]\mathrm{Calculate\:exponents}\:\left(1\right)^2\::\quad 1[/tex]

[tex]=\left(2\right)\left(4\right)-1+2\left(4\right)[/tex]

[tex]\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(4\right)\::\quad 8[/tex]

[tex]=8-1+2\left(4\right)[/tex]

[tex]\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(4\right)\::\quad 8[/tex]

[tex]=8-1+8[/tex]

[tex]\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:8-1+8\::\quad 15[/tex]

[tex]=15[/tex]

Therefore,

[tex]ab-c^2+2b=\left(2\right)\left(4\right)-\left(1\right)^2+2\left(4\right)=15[/tex]

                                                     Question # 4

Given the expression

[tex]4d^3+2e\div \:f+de[/tex]

Putting d = 2, e = 3, and f = 6 in the expression

[tex]=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)[/tex]

Follow the PEMDAS order of operations

[tex]\mathrm{Calculate\:exponents}\:\left(2\right)^3\::\quad 8[/tex]

[tex]=4\cdot \:8+2\left(3\right)\div \:6+\left(2\right)\left(3\right)[/tex]

[tex]\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:4\cdot \:8\::\quad 32[/tex]

[tex]=32+2\left(3\right)\div \:6+\left(2\right)\left(3\right)[/tex]

[tex]\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:2\left(3\right)\div \:6\::\quad 1[/tex]

[tex]=32+1+\left(2\right)\left(3\right)[/tex]

[tex]\mathrm{Multiply\:and\:divide\:\left(left\:to\:right\right)}\:\left(2\right)\left(3\right)\::\quad 6[/tex]

[tex]=32+1+6[/tex]

[tex]\mathrm{Add\:and\:subtract\:\left(left\:to\:right\right)}\:32+1+6\::\quad 39[/tex]

[tex]=39[/tex]

Therefore,

[tex]4d^3+2e\div \:\:f+de=4\left(2\right)^3+2\left(3\right)\div \:6+\left(2\right)\left(3\right)=39[/tex]