A variable is normally distributed with mean 20 and standard deviation 8. Use your graphing calculator to find each of thefollowing areas. Write your answers in decimal form. Round to the nearest thousandth as needed.a) Find the area to the left of 23.b) Find the area to the left of 12c) Find the area to the right of 22.d) Find the area to the right of 24.e) Find the area between 12 and 30Check Answer

Respuesta :

Answer:

• (a)0.646

,

• (b)0.159

,

• (c)0.401

,

• (d)0.309

,

• (e)0.736

Explanation:

• Mean = 20

,

• Standard deviation = 8

[tex]Z-\text{Score}=\frac{X-\mu}{\sigma}[/tex]

Part A

Area to the left of 23. i,e X=23

First, we find the z-score.

[tex]\begin{gathered} Z=\frac{23-20}{8} \\ =\frac{3}{8} \\ z-\text{score}=0.375 \end{gathered}[/tex]

The area to the left of 23 is P(x<23).

From the z-score table:

[tex]\begin{gathered} P\mleft(x<23\mright)=0.64617 \\ P\mleft(x<23\mright)\approx0.646 \end{gathered}[/tex]

Part B

Area to the left of 12. i,e X=12

[tex]\begin{gathered} Z=\frac{12-20}{8}=\frac{-8}{8} \\ z-\text{score}=-1 \end{gathered}[/tex]

The area to the left of 12 is P(x<12).

From the z-score table:

[tex]P\mleft(x<12\mright)=0.15866\approx0.159[/tex]

Part C

Area to the right of 22. i,e X=22

[tex]\begin{gathered} Z=\frac{22-20}{8}=\frac{2}{8} \\ z-\text{score}=0.25 \end{gathered}[/tex]

The area to the right of 22 is P(x>22).

From the z-score table:

[tex]P\mleft(x>22\mright)=0.40129\approx0.401[/tex]

Part D

Area to the right of 24. i,e X=24

[tex]\begin{gathered} Z=\frac{24-20}{8}=\frac{4}{8} \\ z-\text{score}=0.5 \end{gathered}[/tex]

The area to the right of 24 is P(x>24).

From the z-score table:

[tex]P\mleft(x>24\mright)=0.30854\approx0.309[/tex]

Part E

The area between 12 and 30

From part B, when X=12, z-Score = -1

When X=30:

[tex]\begin{gathered} Z=\frac{30-20}{8}=\frac{10}{8} \\ z-\text{score}=1.25 \end{gathered}[/tex]

Thus, the area between 12 and 30 is:

[tex]P\mleft(-1