Respuesta :

Answer:

z = -0.5

Step-by-step explanation:

Using exponent rule:

[tex]x^a = x^b[/tex] then a = b

Given the equation:

[tex]25^{z+2} = 125[/tex]

We can write 25 and 125 as:

[tex]25 = 5 \cdot 5 = 5^2[/tex]

[tex]125 = 5 \cdot 5 \cdot 5 = 5^3[/tex]

then;

[tex]5^{2(z+2)}= 5^3[/tex]

Apply the rule:

[tex]2(z+2) = 3[/tex]

using distributive property [tex]a \cdot (b+c) = a\cdot b+ a\cdot c[/tex]

[tex]2z+4 = 3[/tex]

Subtract 4 from both sides we have;

[tex]2z = -1[/tex]

Divide both sides by 2 we have;

z = -0.5

Therefore, the solution for the given equation is, z = -0.5