Respuesta :

cSin(B) = bSin(C) is the missing statement

Answer:

(C)  [tex]c(sin(B))=b(sin(C))[/tex]  

Step-by-step explanation:

Given: In ΔABC, AD⊥BC.

To prove: [tex]\frac{sinB}{b}=\frac{sinC}{c}[/tex]

Proof:

Statement                                     Reason

1. In ΔABC, AD⊥BC.                      Given

2. In ΔADB, [tex]sinB=\frac{h}{c}[/tex]              Definition of sine

3. [tex]c(sinB)=h[/tex]                            Multiplicative property of equality

4. In ΔACD, [tex]sinC=\frac{h}{b}[/tex]              Definition of sine

5.  [tex]b(sinC)=h[/tex]                            Multiplicative property of equality

6. [tex]c(sin(B))=b(sin(C))[/tex]              Substitution

7. [tex]\frac{sinB}{b}=\frac{sinC}{c}[/tex]   Division property of equality.

Hence proved.

Therefore, option C is correct.