Respuesta :
Hello!
We have the following data:
m (mass) = 4.6 grams
MM (molar mass) of H2O
H = 2 * 1 = 2 amu
O = 1 * 16 = 16 amu
--------------------------
MM (molar mass) of H2O = 2 + 16 = 18 g/mol
Solving:
Establishing a relation with Avogadro's number (6.10²³) we have:
18 g of H2O --------------- 6.10²³ molecules
4.6 g of H2O --------------- y molecules
[tex]18*y = 4.6*6.10^{23}[/tex]
[tex]18y = 2.76*10^{24}[/tex]
[tex]y = \frac{2.76*10^{24}}{18} [/tex]
[tex]\boxed{\boxed{y \approx 1.53*10^{23}\:molecules}}\end{array}}\qquad\quad\checkmark[/tex]
We have the following data:
m (mass) = 4.6 grams
MM (molar mass) of H2O
H = 2 * 1 = 2 amu
O = 1 * 16 = 16 amu
--------------------------
MM (molar mass) of H2O = 2 + 16 = 18 g/mol
Solving:
Establishing a relation with Avogadro's number (6.10²³) we have:
18 g of H2O --------------- 6.10²³ molecules
4.6 g of H2O --------------- y molecules
[tex]18*y = 4.6*6.10^{23}[/tex]
[tex]18y = 2.76*10^{24}[/tex]
[tex]y = \frac{2.76*10^{24}}{18} [/tex]
[tex]\boxed{\boxed{y \approx 1.53*10^{23}\:molecules}}\end{array}}\qquad\quad\checkmark[/tex]
Answer: The number of molecules present in given amount of water are [tex]1.54\times 10^{23}[/tex]
Explanation:
To calculate the number of moles, we use the equation:
[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]
Given mass of water = 4.6 g
Molar mass of water = 18.0 g/mol
Putting values in above equation, we get:
[tex]\text{Moles of water}=\frac{4.6g}{18.0g/mol}=0.255mol[/tex]
According to mole concept:
1 mole of a compound contains [tex]6.022\time 10^{23}[/tex] number of molecules.
So, 0.255 moles of water will contain [tex]0.255\times 6.022\times 10^{23}=1.54\times 10^{23}[/tex] number of molecules.
Hence, the number of molecules present in given amount of water are [tex]1.54\times 10^{23}[/tex]