Given P(x) = 2x3 - 11x2 + 18x - 15 is divided by x – 3. Use synthetic division to find the quotient and the remainder.

Respuesta :

You can find the remainder right away by simply plugging in [tex]x=3[/tex]. The polynomial remainder theorem guarantees that the value of [tex]p(3)[/tex] is the remainder upon dividing [tex]p(x)[/tex] by [tex]x-3[/tex], but I digress...

Synthetic division yields

3   |   2   -11   18   -15
.    |           6   -15     9
- - - - - - - - - - - - - - - - -
.    |   2     -5     3     -6

which translates to

[tex]\dfrac{2x^3-11x^2+18x-15}{x-3}=2x^2-5x+3-\dfrac6{x-3}[/tex]

(and note that [tex]p(3)=2(3)^3-11(3)^2+18(3)-15=-6[/tex], as expected)