Respuesta :

iGreen
Plug -5 into both of them and divide:

[tex]\sf\dfrac{2x-20}{x-1}[/tex]

[tex]\sf\dfrac{2(-5)-20}{-5-1}[/tex]

Simplify:

[tex]\sf\dfrac{-10-20}{-6}[/tex]

[tex]\sf\dfrac{-30}{-6}[/tex]

[tex]\boxed{\sf 5}[/tex]

Answer:

Option b is correct.

[tex](\frac{f}{g})(-5)[/tex] = 5

Step-by-step explanation:

Given the functions:

[tex]f(x)=2x-20[/tex]

[tex]g(x)=x-1[/tex]

Solve: [tex](\frac{f}{g})(-5)[/tex]

[tex](\frac{f}{g})(x) = \frac{f(x)}{g(x)}[/tex]

Substitute the given function we have;

[tex](\frac{f}{g})(x) = \frac{2x-20}{x-1}[/tex]

Put x = -5 we have;

[tex](\frac{f}{g})(-5) = \frac{2(-5)-20}{-5-1} =\frac{-10-20}{-6}=\frac{-30}{-6} = 5[/tex]

therefore, the value of [tex](\frac{f}{g})(-5)[/tex] is 5.