Respuesta :

[tex]\bf x= \begin{cases} \pm \sqrt{5}\\ -7 \end{cases}\implies \begin{cases} x=\sqrt{5}\implies &(x-\sqrt{5})=0\\ x=-\sqrt{5}\implies &(x+\sqrt{5})=0\\ x=-7\implies &(x+7)=0 \end{cases} \\\\\\ \stackrel{\textit{difference of squares}}{(x-\sqrt{5})(x+\sqrt{5})}(x+7)=\textit{original polynomial} \\\\\\ (x^2-5)(x+7)=y\implies x^3+7x^2-5x-35=y[/tex]