Respuesta :
Remember:
sin²x + cos²x = 1
(-5/13)² + cos²θ = 1
(25/169) + cos²θ = 1
cos²θ = 1 - (25/169)
cos²θ = (144/169)
tan θ > 0 ⇒ cosθ = negative
cosθ = -√(144/169)
cosθ = -(12/13)
sin²x + cos²x = 1
(-5/13)² + cos²θ = 1
(25/169) + cos²θ = 1
cos²θ = 1 - (25/169)
cos²θ = (144/169)
tan θ > 0 ⇒ cosθ = negative
cosθ = -√(144/169)
cosθ = -(12/13)
Answer:
[tex]cos\theta =-\frac{12}{13}[/tex]
Step-by-step explanation:
[tex]tan\theta =\frac{sin \theta}{cos \theta}[/tex]
If tan θ > 0 and sin θ < 0 then cos θ <0
We have sin²θ + cos²θ = 1
That is
[tex]\left ( \frac{-5}{13} \right )^2+cos^2\theta =1\\\\cos^2\theta =1-\frac{25}{169}=\frac{144}{169}\\\\cos\theta =-\frac{12}{13}[/tex]