Respuesta :

Remember:

sin²x + cos²x = 1

(-5/13)² + cos²θ = 1

(25/169) + cos²
θ = 1

cos²
θ = 1 - (25/169)

cos²
θ = (144/169)

tan 
θ > 0 ⇒ cosθ = negative

cos
θ = -√(144/169)

cosθ = -(12/13)

Answer:

[tex]cos\theta =-\frac{12}{13}[/tex]

Step-by-step explanation:

[tex]tan\theta =\frac{sin \theta}{cos \theta}[/tex]

If tan θ > 0 and sin θ < 0 then cos θ <0

We have sin²θ + cos²θ = 1

That is

           [tex]\left ( \frac{-5}{13} \right )^2+cos^2\theta =1\\\\cos^2\theta =1-\frac{25}{169}=\frac{144}{169}\\\\cos\theta =-\frac{12}{13}[/tex]