[tex]\bf 1+tan^2(\theta)=sec^2(\theta)\implies 1=sec^2(\theta)-tan^2(\theta)\\\\
\cfrac{1}{csc(\theta)}=sin(\theta)\qquad \qquad cot(\theta)=\cfrac{1}{tan(\theta)}
\\\\
[/tex]
[tex]\bf -----------------------------\\\\
\begin{array}{cccccccccc}
sin(x)&+&3tan(x)cot(x)&-&\cfrac{1}{csc(x)}&-&sec^2(x)+tan^2(x)\\
\downarrow &&\downarrow &&\downarrow &&\downarrow\\
&&3tan(x)\cfrac{1}{tan(x)}&&sin(x)&&-[sec^2(x)-tan^2(x)]\\\\
sin(x) &+&3&-&sin(x) &-&1
\end{array}\\\\
-----------------------------\\\\
sin(x)+3-sin(x)-1\implies 3-1\implies\boxed{ 2} [/tex]