Respuesta :

frika

Use main properties of powers

  • [tex](a^m)^n=a^{m\cdot n};[/tex]
  • [tex]\dfrac{1}{a^n}=a^{-n}[/tex]

to simplify given equation.

1.

[tex]4^x=(2^2)^x=2^{2x}.[/tex]

2.

[tex]\left(\dfrac{1}{8}\right)^{x+5}=\left(\dfrac{1}{2^3}\right)^{x+5}=(2^{-3})^{x+5}=2^{-3x-15}.[/tex]

3. Then the equation is

[tex]2^{2x}=2^{-3x-15}.[/tex]

The bases are the same, so equate the powers:

2x=-3x-15,

2x+3x=-15,

5x=-15,

x=-3.

Answer: for x=-3.


Answer:

Calculator said -3

Step-by-step explanation: