The coordinates of the line are the solution of the given line and if they staisfy the given equation so, they are the solution of the equation : 3x - 2y ≥ -1
A) (-2, -2.5)
Given equation :
[tex]\begin{gathered} 3x-2y\ge-1 \\ 3(-2)-2(-2.5)\ge-1 \\ -6+5\ge-1 \\ -1\ge-1 \\ \text{Equation satisfy: So, (-2,-2.5) is the solution of }3x-2y\ge-1 \end{gathered}[/tex]B) (2,4)
Given equation:
[tex]\begin{gathered} 3x-2y\ge-1 \\ 3(2)-2(4)\ge-1 \\ 6-8\ge-1 \\ -2\ge-1 \\ \text{Equation does not satisfy: So, (2,4 ) is not the solution of }3x-2y\ge-1 \end{gathered}[/tex]C) (1, 2.5)
Given equation:
[tex]\begin{gathered} 3x-2y\ge-1 \\ 3(1)-2(2.5)\ge-1 \\ 3-5\ge-1 \\ -2\ge-1 \\ \text{Equationdoes not satisfy: So, (1, 2.5) is not the solution of }3x-2y\ge-1 \end{gathered}[/tex]D) (-1,1)
Given equation:
[tex]\begin{gathered} 3x-2y\ge-1 \\ 3(-1)-2(1)\ge-1 \\ -3-2\ge-1 \\ -5\ge-1 \\ \text{Equation doesnot satisfy: So, (-1,1) is not the solution of }3x-2y\ge-1 \end{gathered}[/tex]Answer: A) (-2, -2.5)