Respuesta :

The Solution:

Given:

The perimeter of a rectangle is 84.

We are asked to find the dimensions ( that is, length and width) of the rectangle.

Let the length of the rectangle be L and W for the width.

So,

[tex]L=2\frac{1}{2}of\text{ W}=\frac{5}{2}W[/tex]

By formula, the perimeter of a rectangle is:

[tex]\begin{gathered} P=2(L+W) \\ \\ In\text{ this case,} \\ P=perimeter=84 \\ W=width=? \\ L=length=\frac{5}{2}W \end{gathered}[/tex]

Substitute these values in the formula, we get:

[tex]84=2(\frac{5}{2}W+W)[/tex]

Dividing both sides by 2, we get:

[tex]\begin{gathered} 42=\frac{5}{2}W+W \\ \\ 42=\frac{5W+2W}{2} \\ \\ 42=\frac{7W}{2} \end{gathered}[/tex]

Cross multiplying, we get:

[tex]\begin{gathered} 7W=2\times42 \\ 7W=84 \end{gathered}[/tex]

Dividing both sides by 7, we get:

[tex]W=\frac{84}{7}=12[/tex]

To find the length L, we shall put 12 for W.

[tex]L=\frac{5}{2}W=\frac{5}{2}\times12=5\times6=30[/tex]

Therefore, the dimensions of the rectangle is 30 by 12.

Length = 30 units

Width = 12 units