Respuesta :

Answer:

[tex]\frac{-1}{8+5\sqrt{3}}[/tex]

The expression we have is:

[tex]\frac{\sqrt{3}-2}{\sqrt{12}+1}[/tex]

To rationalize the numerator we must do as follows:

[tex]\frac{\sqrt{3}-2}{\sqrt{12}+1}\cdot\frac{\sqrt{3}+2}{\sqrt{3}+2}[/tex]

We multiply the whole expression by the numerator, but we change the sign.

Next, we combine the two fractions:

[tex]\frac{(\sqrt{3}-2)(\sqrt{3}+2)}{(\sqrt{12}+1)(\sqrt{3}+2)}[/tex]

Now we use the distributive property to multiply each term (this is to multiply each term in each parenthesis by each term in the other parenthesis besides them).

[tex]\frac{\sqrt{3}\cdot\sqrt{3}+2\sqrt{3}-2\sqrt{3}-2\cdot2}{\sqrt{12}\cdot\sqrt{3}+2\sqrt{12}+1\cdot\sqrt{3}+1\cdot2}[/tex]

We simplify the multiplications, and cancel the two middle terms in the numerator:

[tex]\begin{gathered} \frac{\sqrt{3\cdot3}-4}{\sqrt{12\cdot3}+2\sqrt{12}+\sqrt{3}+2} \\ \end{gathered}[/tex]

we simplify again:

[tex]\frac{\sqrt{9}-4}{\sqrt{36}+2\sqrt{12}+\sqrt{3}+2}[/tex]

We solve the square roots of 9 (which is 3) and 36 (which is 6)

[tex]\frac{3-4}{6+2\sqrt{12}+\sqrt{3}+2}[/tex]

Solving the numerator

[tex]\frac{-1}{6+2\sqrt{12}+\sqrt{3}+2}[/tex]

And finally what we can do simplify further is to express the square root of 12 as follows:

[tex]\sqrt{12}=\sqrt{4\cdot3}=2\sqrt{3}[/tex]

Substituting this into our expression:

[tex]\begin{gathered} \frac{-1}{6+2(2\sqrt{3})+\sqrt{3}+2} \\ \\ \frac{-1}{6+4\sqrt{3}+\sqrt{3}+2} \end{gathered}[/tex]

We add 4 and 1 square roots of 3 in the denominar and get 5 square root of 3:

[tex]\frac{-1}{8+5\sqrt{3}}[/tex]

also we added 6+2 which is 8.

That is the simplified answer.