For each value of u, determine whether it is a solution to 5u + 6 > 51.

ANSWER
[tex]u=10[/tex]EXPLANATION
Given
[tex]5u+6>51[/tex]To check if each of the given values is a solution;
We substitute each of the given values into the equation.
Hence, when;
[tex]\begin{gathered} u=-1 \\ \end{gathered}[/tex][tex]5u+6>51[/tex]substitute
[tex]u=-1[/tex]We have;
[tex]\begin{gathered} 5u+6\gt51 \\ 5\left(-1\right?+6>51 \\ -5+6>51 \\ 1>51 \end{gathered}[/tex]Since ;
[tex]1<51[/tex]Hence;
[tex]u=-1[/tex]u = -1 is not a solution.
When
[tex]u=10[/tex][tex]\begin{gathered} 5u+6\gt51 \\ 5\left(10\right?+6>51 \\ 50+6>51 \\ 56>51 \end{gathered}[/tex]Hence;
[tex]u=10[/tex]Is a solution.
When
[tex]u=9[/tex]Substitute u = 9
[tex]\begin{gathered} 5u+6\gt51 \\ 5\left(9\right?+6>51 \\ 45+6>51 \\ 51>51 \end{gathered}[/tex]Hence
[tex]u=9[/tex]is not a solution
Hence, since -6 is less than 9, -6 is not also a solution to the given equation.
Therefore the only solution is;
[tex]undefined[/tex]