Respuesta :

This is an equation of a parabola (quadratic) of the form:

[tex]ax^2+bx+c[/tex]

According to the equation, the values of the constants are:

a = 6

b = -1

c = -4

The max value of a parabolic function occurs at:

[tex]x=-\frac{b}{2a}[/tex]

We substitute and find:

[tex]\begin{gathered} x=-\frac{-1}{2(6)} \\ x=\frac{1}{12} \end{gathered}[/tex]

Then, if u plug in that number into the function, you will get the max/min value:

[tex]\begin{gathered} f(\frac{1}{12})=6(\frac{1}{12})^2-\frac{1}{12}-4 \\ =6(\frac{1}{144})-\frac{1}{12}-4 \\ =\frac{1}{24}-\frac{1}{12}-4 \\ =\frac{1-1(2)-4(24)}{24} \\ =\frac{1-2-96}{24} \\ =-\frac{97}{24} \end{gathered}[/tex]

So, the extrema value is at:

[tex](\frac{1}{12},-\frac{97}{24})[/tex]

Also, this is a minimum.

If a > 0 , we have a minimum

If a < 0, we have a max.

Since a = 6 which is greater than 0, so the answer is minimum.