Respuesta :

Given that the events are independent, we can use the following rule:

[tex]P(A\text{ and B\rparen=}P(A)P(B).[/tex]

Therefore:

[tex]P(Q\text{ and R\rparen=}P(Q)P(R).[/tex]

Substituting the given values, we get:

[tex]P(Q)P(R)=0.32(0.19)=0.0608.[/tex]

Answer:

[tex]\begin{equation*} 0.0608. \end{equation*}[/tex]