Respuesta :

Solution:

Given:

[tex]\begin{gathered} P=\text{ \$10,200} \\ n=4\text{ (compounded quarterly)} \\ r=10\text{ \% = }\frac{10}{100}=0.1 \\ t=6 \end{gathered}[/tex]

To get the amount, we use the formula below;

[tex]A=P(1+\frac{r}{n})^{nt}[/tex]

Substituting the values into the formula,

[tex]\begin{gathered} A=10200(1+\frac{0.1}{4})^{4\times6} \\ A=10200(1+0.025)^{24} \\ A=10200(1.025)^{24} \\ A=10200\times1.025^{24} \\ A=18,449 \end{gathered}[/tex]

Therefore, the amount is $18,449.00