In the diagram below, GPK = 18x + 5 and KPH = 14x + 15. Solve for the measure of angleGPK.PH

We can say that the two triangles are identical, then, the angle GPK is equal to the angle KPH, then we write the following equation:
[tex]\begin{gathered} \angle GPK=\angle KPH \\ \\ 18x+5=14x+15 \\ \\ 4x=10 \\ \\ x=\frac{10}{4}=\frac{5}{2}=2.5 \end{gathered}[/tex]Now we know the value of x, we can return to the equation and find the value of the angle GPK
[tex]\begin{gathered} \angle GPK=18x+5 \\ \\ \operatorname{\angle}GPK=18\cdot\frac{5}{2}+5 \\ \\ \operatorname{\angle}GPK=9\cdot5+5 \\ \\ \operatorname{\angle}GPK=45+5 \\ \\ \angle GPK=50 \end{gathered}[/tex]Therefore, the measure of the angle GPK is equal to 50 degrees