Respuesta :

Answer:

x = 1

Explanation:

To solve for x in the equation,

[tex]4^{3x-3}=8^{4x-4}[/tex]

We write each side as

[tex]\begin{gathered} 4^{3x-3}=(2^2)^{3x-3} \\ 8^{4x-4}=\mleft(2^3\mright)^{\mleft\{4x-4\mright\}} \end{gathered}[/tex]

which gives

[tex](2^2)^{3x-3}=(2^3)^{\{4x-4\}}[/tex]

Now, using the property that

[tex](A^x)^y=A^{xy}[/tex]

we rewrite the above as

[tex]2^{2(3x-3)}=2^{3\{4x-4\}}[/tex]

Which implies

[tex]2(3x-3)=3(4x-4)_{}[/tex]

Expanding the equation gives

[tex]6x-6=12x-12[/tex]

Adding 6 to both sides gives

[tex]6x=12x-12+6[/tex][tex]6x=12x-6[/tex]

subtracting 12x from both sides gives

[tex]6x-12x=-6[/tex][tex]-6x=-6[/tex]

Finally, dividing both sides by -6 gives

[tex]x=1[/tex]

which is our answer!