Respuesta :

(h o g)(t) is 2t^3+3.

Given:

[tex]\begin{gathered} h(t)=2t-1 \\ g(t)=t^3+2 \end{gathered}[/tex]

The objective is to find composite functions, (h o g)(t).

The composite function can be calculated as,

[tex]\begin{gathered} (h\circ g)(t)=h(g(t)) \\ =h(t^3+2) \\ =2(t^3+2)-1 \\ =2t^3+2(2)-1 \\ =2t^3+4-1 \\ =2t^3+3 \end{gathered}[/tex]

Hence, the composite functions, (h o g)(t) is 2t^3+3.