Respuesta :

SOLUTION

Step1: write out the expression

[tex]\sqrt[]{125x}[/tex]

we have to write this expression in its simplest form to identify the value of A and B

Step2: Identify the perfect square and write has a product

[tex]125=25\times5[/tex]

Step3: replace the product above with 125 in the expression

[tex]\sqrt[]{125x}=\sqrt[]{25\times5\times x}[/tex]

Step4: simplify the last expression by applying the rational rule below

[tex]\sqrt[]{a\times b}=\sqrt[]{a}\times\sqrt[]{b}[/tex]

Hence we have

[tex]\sqrt[]{25\times5\times x}=\sqrt[]{25}\times\sqrt[]{5}\times\sqrt[]{x}[/tex][tex]\sqrt[]{25}\times\sqrt[]{5}\times\sqrt[]{x}=5\times\sqrt[]{5}\times\sqrt[]{x}=5\sqrt[]{5x}[/tex]

Hence

[tex]\sqrt[]{125x}=5\sqrt[]{5x}[/tex]

Therefore

A=5 and B=5x