Respuesta :

Answer:

2+x

Explanation:

Given the following:

[tex]\begin{gathered} \log _25=x \\ \log _23=y \end{gathered}[/tex]

The idea is to express the given integer (20) in terms of either the base or the values given (3 and 5).

[tex]\begin{gathered} \log _220=\log _2(4\times5) \\ =\log _2(2^2\times5) \end{gathered}[/tex]

Next, since we have the multiplication sign, we use the addition law:

[tex]=\log _22^2+\log _25[/tex]

The power of the number becomes the product of the log, so we have:

[tex]=2\log _22+\log _25[/tex]

When you have the same base and number, the result is always 1.

[tex]\begin{gathered} \log _22=1 \\ \implies2\log _22+\log _25=2(1)+\log _25 \\ =2+x \end{gathered}[/tex]

Therefore:

[tex]\text{log}_220=2+x[/tex]