Respuesta :

The rule of the permutation is

[tex]\text{nPr}=\frac{n!}{(n-r)!}[/tex]

From the given picture we need to find 8P6, then

n = 8

r = 6

[tex]\begin{gathered} 8P6=\frac{8!}{(8-6)!} \\ 8P6=\frac{8!}{2!} \\ 8P6=\frac{8\times7\times6\times5\times4\times3\times2\times1}{2\times1} \\ 8P6=20160 \end{gathered}[/tex]

8P6 = 20160

If it is 8P0, then

n = 8

r = 0

[tex]\begin{gathered} 8P0=\frac{8!}{(8-0)!} \\ 8P0=\frac{8!}{8!} \\ 8P0=1 \end{gathered}[/tex]

8P0 = 1