If you can't read the numbers they say 8. p. 0

The rule of the permutation is
[tex]\text{nPr}=\frac{n!}{(n-r)!}[/tex]From the given picture we need to find 8P6, then
n = 8
r = 6
[tex]\begin{gathered} 8P6=\frac{8!}{(8-6)!} \\ 8P6=\frac{8!}{2!} \\ 8P6=\frac{8\times7\times6\times5\times4\times3\times2\times1}{2\times1} \\ 8P6=20160 \end{gathered}[/tex]8P6 = 20160
If it is 8P0, then
n = 8
r = 0
[tex]\begin{gathered} 8P0=\frac{8!}{(8-0)!} \\ 8P0=\frac{8!}{8!} \\ 8P0=1 \end{gathered}[/tex]8P0 = 1