Here
[tex]v_o=183\text{ ft/sec}[/tex][tex]h_o=46\text{ ft}[/tex]When the arrow hit the ground then h=0 so
[tex]0=16t^2+183t+46[/tex][tex]\Rightarrow16t^2+183t+46=0[/tex]Solving the equation we have
[tex]t=\frac{-183\pm\sqrt[]{183^2+2944}}{32}=\frac{-183\pm\sqrt[]{33489+2944}}{32}=\frac{-183\pm\sqrt[]{36433}}{32}=\frac{-183\pm190.8743}{32}[/tex][tex]t=\frac{-183+190.8743}{32}=0.2461\text{ }[/tex]or
[tex]t=\frac{-183-190.8743}{32}=\frac{-373.8743}{32}=-11.685[/tex]Since time can not be negative so the time required when the arrow hit the ground will be
[tex]t=0.2461\text{ sec}[/tex]