in each of the following geometric sequences, find (i) the 7th term; (ii) the nth term. a. 1/2, 3/4, 9/8, .... b. √5, 5, 5√5, ....c. - 1/2, 3/4, - 9/8, ....

in each of the following geometric sequences find i the 7th term ii the nth term a 12 34 98 b 5 5 55 c 12 34 98 class=

Respuesta :

Part a

we have

a. 1/2, 3/4, 9/8, ....

a1=1/2

a2=3/4

a3=9/8

so

a2/a1=(3/4)/(1/2)=3/2

a3/a2=(9/8)/(3/4)=3/2

that means

the common ratio r=3/2

the general formula is

[tex]a_n=a_1\cdot r^{(n-1)}[/tex]

substitute given values

[tex]a_n=\frac{1}{2}\cdot(\frac{3}{2})^{(n-1)}[/tex]

For n=7

substitute

[tex]\begin{gathered} a_7=\frac{1}{2}\cdot(\frac{3}{2})^{(7-1)} \\ \\ a_7=\frac{1}{2}\cdot\frac{729}{64} \\ \\ a_7=\frac{729}{128} \end{gathered}[/tex]

Part b

we have

b. √5, 5, 5√5, ....

a1=√5

a2=5

a3=5√5

so

a2/a1=5/√5=√5

a3/a2=5√5/5=√5

the common ratio is r=√5

the general formula is

[tex]a_n=a_1\cdot r^{(n-1)}[/tex]

substitute given values

[tex]a_n=\sqrt[]{5}_{}\cdot(\sqrt[]{5}^{(n-1)})[/tex]

For n=7

[tex]\begin{gathered} a_7=\sqrt[]{5}_{}\cdot(\sqrt[]{5}^{(7-1)}) \\ a_7=125\sqrt[]{5}_{} \end{gathered}[/tex]