metry Precalculus Honors S1Understanding the Inverse Relationshiphe table shows the inputs and corresponding outputsor the function f(x) = (1)(2)*.026x84.Find the following values of the function.ƒ^¹ (3)=[f-¹ (8) =

metry Precalculus Honors S1Understanding the Inverse Relationshiphe table shows the inputs and corresponding outputsor the function fx 12026x84Find the followin class=

Respuesta :

...

SOLUTION

[tex]\begin{gathered} f(x)=(\frac{1}{8})2^x \\ f^{-1}(x)=? \end{gathered}[/tex]

To determine the inverse function;

[tex]Solve\text{ the equation for x, then interchange x for y.}[/tex][tex]Let\text{ y=f\lparen x\rparen}[/tex][tex]\begin{gathered} y=\frac{1}{8}(2)^x \\ 8y=2^x \\ ln(8y)=ln2^x \\ ln(8y)=xln2 \\ x=\frac{ln(8y)}{ln2}\text{ ie y=}\frac{ln(8x)}{ln2} \\ \therefore f^{-1}(x)=\frac{ln(8x)}{ln(2)} \end{gathered}[/tex]

Now,

[tex]f^{-1}(\frac{1}{2})=\frac{ln(8\times\frac{1}{2})}{ln2}=\frac{ln4}{ln2}=2[/tex][tex]f^{-1}(8)=\frac{ln(8\times8)}{ln2}=\frac{ln(64)}{ln2}=6[/tex]