Respuesta :

Given:

[tex]\begin{gathered} z_1 \\ z_2 \end{gathered}[/tex]

You need to remember that a Complex Number has this form:

[tex]a+bi[/tex]

Where "a" is the real part and this is the imaginary part:

[tex]bi[/tex]

You can identify that:

[tex]z_2=-4+0i[/tex]

And:

[tex]z_1\approx-2.8+2.8i[/tex]

You need to multiply them in order to find:

[tex]z_1z_2[/tex]

You get:

[tex]z_1z_2=(-4+0i)(-2.8+2.8i)[/tex][tex]z_1z_2=(-4)(-2.8+2.8i)[/tex][tex]z_1z_2=(-4)(-2.8)+(-4)(2.8i)[/tex][tex]z_1z_2=11.2-11.2i[/tex]

You can identify that the approximate coordinates of point R are:

[tex]R(11.2,11.2i)[/tex]

Hence, the answer is: Third option.