Respuesta :

Given the function:

[tex]y=x^2-2x-8[/tex]

The function above is a quadratic function, the graph is a parabola

The standard form of a quadratic function is given by:

[tex]\begin{gathered} ax^2+bx+c=0 \\ \text{for a parabola with }a\text{ vertex (h, k)} \\ If\text{ a<0},\text{ the range is y}\leq k \\ \text{if a>0},\text{ the range is y}\ge k \end{gathered}[/tex]

From the given graph and function,

[tex]\begin{gathered} The\text{ vertex (h, k) = (}1,\text{ -9)} \\ a\text{ =1} \\ \sin ce,\text{ a>0, the range is y}\ge-9 \end{gathered}[/tex]

Therefore, the range of the function is:

[tex]undefined[/tex]