Please help me with the question below (also please explain).

To find the surface area of the given figure identify all the faces on the figure, calculate the area of each face and then sum the areas:
Measures in red
Number of faces in green, total faces 9
Area of a triangle:
[tex]A=\frac{1}{2}bh[/tex]Area of a rectangle:
[tex]A=bh[/tex]Area of faces 1 and 2(rectangles):
[tex]\begin{gathered} A_1=A_2=20in*11in \\ A_1=A_2=220in^2 \end{gathered}[/tex]Area of faces 3 and 4 (triangles):
[tex]\begin{gathered} A_3=A_4=\frac{1}{2}(12in)(9in) \\ \\ A_3=A_4=54in^2 \end{gathered}[/tex]Area of faces 5 and 6 (rectangles):
[tex]\begin{gathered} A_5=A_6=12in*5in \\ A_5=A_6=60in^2 \end{gathered}[/tex]Area of faces 7 and 8 (rectangles):
[tex]\begin{gathered} A_7=A_8=20in*5in \\ A_7=A_8=100in^2 \end{gathered}[/tex]Are of face 9 (rectangle):
[tex]\begin{gathered} A_9=20in*12in \\ A_9=240in^2 \end{gathered}[/tex]Total surface area:
[tex]\begin{gathered} SA=A_1+A_2+A_3+A_4+A_5+A_6+A_7+A_8+A_9 \\ \\ SA=220in^2+220in^2+54in^2+54in^2+60in^2+60in^2+100in^2+100in^2+240in^2 \\ \\ SA=1108in^2 \end{gathered}[/tex]