Work out the surface area of this solid prism. 25cm 17cm 15cm 30cm 28cm The diagram is not drawn to scale. cm2

To calculate we have to break down the shape into the respective surfaces
The area of a triangle is
[tex]\begin{gathered} \text{Area}=\frac{1}{2}\times base\times height \\ \text{where,} \\ \text{base}=28\operatorname{cm} \\ \text{height}=15\operatorname{cm} \end{gathered}[/tex]Substituting the values, we will have
[tex]\begin{gathered} \text{Area}=\frac{1}{2}\times28\operatorname{cm}\times15\operatorname{cm} \\ \text{Area}=14\times15 \\ \text{Area}=210\operatorname{cm}^2 \end{gathered}[/tex]Secondly, we will bring out the base
The area of a rectangle is
[tex]\begin{gathered} \text{Area}=\text{Length}\times breadth \\ \text{where,} \\ \text{length}=30\operatorname{cm} \\ \text{breadth}=28\operatorname{cm} \end{gathered}[/tex]By substituting the values, we will have
[tex]\begin{gathered} \text{Area}=\text{Length}\times breadth \\ \text{Area}=30\operatorname{cm}\times28\operatorname{cm} \\ \text{Area}=840\operatorname{cm}^2 \end{gathered}[/tex]Thirdly,
We will bring the out slant rectangular faces
The area of a rectangle is
[tex]\begin{gathered} \text{Area}=\text{Length}\times breadth \\ \text{where,} \\ \text{length}=30\operatorname{cm} \\ \text{breadth}=25\operatorname{cm} \end{gathered}[/tex][tex]\begin{gathered} \text{Area}=30\operatorname{cm}\times25\operatorname{cm} \\ \text{Area}=750\operatorname{cm}^2 \end{gathered}[/tex][tex]\begin{gathered} \text{Area of the second slant rectangular face=Length}\times breadth \\ \text{Area of the second slant rectangular face}=17\operatorname{cm}\times30\operatorname{cm}= \\ \text{Area of the second slant rectangular face}=510\operatorname{cm}^2 \end{gathered}[/tex]Hence,
The total surface area of the solid prism will be
[tex]\begin{gathered} \text{Total}=\text{ (area of two triagular faces) + (area of the base) + (area of the rectangular slant faces)} \\ \text{Total surface area = }(2\times210cm^2)+(840\operatorname{cm})+(750\operatorname{cm})+(510\operatorname{cm}) \\ \text{Total surface area}=420\operatorname{cm}+840\operatorname{cm}+750\operatorname{cm}+510\operatorname{cm} \\ \text{Total surface area}=2,520\operatorname{cm}^2 \end{gathered}[/tex]Hence,
The final answer is = 2,520cm²