f(x) = 3x3 + 8x2 - 7x - 4
g(x) = 2x – 6
Find (f - g)(x).
--
5x + 2
92 + 2
1
A. (f - g)(x) = 3x3 + 8x2
B. (f - g)(x) = 3x3 + 8x2
c. (f - g)(x) = 3x3 + 8x2
D. (f - g)(x) = 3x3 + 8x2
-
9x
10
52
10

fx 3x3 8x2 7x 4gx 2x 6Find f gx5x 292 21A f gx 3x3 8x2B f gx 3x3 8x2c f gx 3x3 8x2D f gx 3x3 8x29x105210 class=

Respuesta :

[tex]B)f^{-1}(x)=\sqrt[3]{\frac{x+4}{3}}[/tex]

Explanation

[tex]f(x)=3x^3-4[/tex]

Step 1

swap the variables x and y

[tex]\begin{gathered} f(x)=3x^3-4 \\ y=3x^3-4 \\ y=3x^3-4\rightarrow x=3y^3-4 \\ x=3y^3-4 \end{gathered}[/tex]

Step 2

now, isolate y

[tex]\begin{gathered} x=3y^3-4 \\ \text{add 4 in both sides} \\ x+4=3y^3-4+4 \\ x+4=3y^3 \\ \text{divide both sides by 3} \\ \frac{x+4}{3}=\frac{3y^3}{3} \\ \frac{x+4}{3}=y^3 \\ \text{get the cubic root in both sides} \\ \sqrt[3]{\frac{x+4}{3}}=\sqrt[3]{y^3} \\ \sqrt[3]{\frac{x+4}{3}}=y\rightarrow inverse\text{ function} \end{gathered}[/tex]

therefore, the answer is

[tex]B)f^{-1}(x)=\sqrt[3]{\frac{x+4}{3}}[/tex]

I hope this helps you