Explanation
We are required to determine the correlation coefficient (r) of the data provided. This should be calculated with the formula:
[tex]r_{xy}=\frac{\sum_{i\mathop{=}1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i\mathop{=}1}^n(x_i-\bar{x})^2\sum_{i\mathop{=}1}^n(y_i-\bar{y})^2}}[/tex]
The information can be represented in a table as:
From the table, we have:
[tex]\begin{gathered} \sum_{i\mathop{=}1}^n(X-M_X)(Y-M_Y)=\sum_{i\mathop{=}1}^n(x_i-\bar{x})(y_i-\bar{y})=31.800 \\ \\ \sum_{i\mathop{=}1}^n(X-M_X)^2=\sum_{i\mathop{=}1}^n(x-\bar{x})^2=288.438 \\ \\ \sum_{i\mathop{=}1}^n(Y-M_Y)^2=\sum_{i\mathop{=}1}^n(y-\bar{y})^2=4.520 \end{gathered}[/tex]
Therefore, we can calculate the correlation coefficient as:
[tex]\begin{gathered} r_{xy}=\frac{\sum_{i\mathop{=}1}^n(x_i-\bar{x})(y_i-\bar{y})}{\sqrt{\sum_{i\mathop{=}1}^n(x_i-\bar{x})_{i\mathop{=}1}^{2\sum n}(y_i-\bar{y})}}\frac{}{} \\ \\ r_{xy}=\frac{31.800}{\sqrt{288.438\times4.520}} \\ \\ r_{xy}=0.8807 \\ \\ r_{xy}\approx0.88 \end{gathered}[/tex]
Hence, the answer is 0.88.