Respuesta :

Using the formula I = Prt with the given values of I, P and r, let's calculate the value of t.

We need to remember that the percentage value r = 6% is equivalent to r = 0.06.

So we have:

[tex]\begin{gathered} I=P\cdot r\cdot t\\ \\ 3696=8800\cdot0.06\cdot t\\ \\ 3696=528\cdot t\\ \\ t=\frac{3696}{528}\\ \\ t=7 \end{gathered}[/tex]

Therefore the answer is t = 7 years.