Respuesta :

The equation of a line in slope-intercept form is given by

[tex]y=mx+b[/tex]

so

step 1

Find out the slope m

we take two points from the table

(2,3) and (5,9)

[tex]\begin{gathered} m=\frac{9-3}{5-2} \\ \\ m=\frac{6}{3} \\ \\ m=2 \end{gathered}[/tex]

step 2

Find out the value of b

we have

m=2

point (2,3)

substitute and solve for b

[tex]\begin{gathered} 3=2(2)+b \\ 3=4+b \\ b=-1 \end{gathered}[/tex]

The linear equation is

[tex]f(x)=2x-1[/tex]

step 3

Find out the value of k

For x=-2

[tex]\begin{gathered} f(x)=2(-2)-1 \\ f(x)=-4-1 \\ f(x)=-5 \end{gathered}[/tex]

therefore

The value of k=-5