Solution
Height (h) = 17m
Diameter (d) = 26m
Radius (r) = d/2 = 26/2 = 13m
The Volume will be
[tex]Volume=Volume\text{ }Of\text{ }Cylindrical\text{ }Body+Volume\text{ }Of\text{ }Hemisphere[/tex]
So,
[tex]\begin{gathered} Volume\text{ }Of\text{ }Cylinder=\pi r^2h \\ \\ Volume\text{ }Of\text{ }Cylinder=\pi\times13^2\times17 \\ \\ Volume\text{ }Of\text{ }Cylinder=2873\pi \end{gathered}[/tex]
and
[tex]\begin{gathered} Volume\text{ }Of\text{ }Hemisphere=\frac{2}{3}\pi r^3 \\ \\ Volume\text{ }Of\text{ }Hemisphere=\frac{2}{3}\times\pi\times13^2 \\ \\ Volume\text{ }Of\text{ }Hemisphere=\frac{338}{3}\pi \end{gathered}[/tex]
The volume of the air in the building is
[tex]\begin{gathered} Volume=2873\pi+\frac{338}{3}\pi \\ \\ Volume=\frac{8957}{3}\pi \\ \\ Volume=9379.748466m^3 \\ \\ Volume=9379.75m^3\text{ \lparen to two decimal places\rparen} \end{gathered}[/tex]