Answer:
$
Explanation:
The formula for compound interest is given below:
[tex]A=P\left(1+\frac{r}{n}\right)^{nt}\text{ where }\begin{cases}P=\text{Principal Invested} \\ r=\text{Interest Rate} \\ n=\text{Number of compounding periods}\end{cases}[/tex]For the given problem:
• The amount Alex deposited, P = $6,000
,• Annual Percentage Rate = 1.2% = 1.2/100 = 0.012
,• Time, t = 6 years
,• The number of compounding periods, n = 12 (Monthly)
Substitute these values into the formula above:
[tex]\begin{gathered} A=6000\left(1+\frac{0.012}{12}\right)^{12\times6} \\ =6000(1+0.001)^{72} \\ =6000(1.001)^{72} \\ =6447.70 \\ \approx\$6448 \end{gathered}[/tex]The amount in 6 years is $6,448 (correct to the nearest dollar).