Respuesta :

Answer: [tex]\begin{gathered} a)\text{ Volume = 1230.88 units}^3 \\ b)\text{ lateral ssurface = 549.5 units}^2\text{ } \\ c)\text{ }Total\text{ surface area of cone = 703.36 unit}^2 \end{gathered}[/tex]Explanation:

Given:

AB = 14

SO = 24

To find:

a) the volume

b) the area of the lateral surface

c) the total surface area

a) To find the volume of the cone, we will use the formula:

[tex]Volume\text{ of a cone = }\frac{1}{3}πr²h[/tex]

r = radius

diameter = AB = 14

diameter = 2(radius)

radius = diameter/2 = 14/2

radius = 7

height = SO = 24

let π= 3.14

[tex]\begin{gathered} Volume\text{ of the cone = }\frac{1}{3}\times3.14\times7^2\times24 \\ Volume\text{ of the cone = 1230.88 unit}^3 \end{gathered}[/tex]

b) To get the lateral surface, we will apply the formula:

[tex]\begin{gathered} lateral\text{ surface of the cone = \pi rl} \\ where\text{ l = }\sqrt{h^2+r^2} \end{gathered}[/tex][tex]\begin{gathered} Lateral\text{ surface of the cone = 3.14 }\times7\times\sqrt{7^2+24^2} \\ \\ Lateral\text{ surface area of the cone = 549.5 units}^2 \end{gathered}[/tex]

c) The total surface area formula:

[tex]\begin{gathered} Total\text{ surface area of cone = Area of base + lateral surface area} \\ \\ Total\text{ surface area = \pi r}^2\text{ + \pi rl} \\ \\ Total\text{ surface area = \lparen3.14 }\times\text{ 7}^2)\text{ + 549.5} \end{gathered}[/tex][tex]Total\text{ surface area of cone = 703.36 unit}^2[/tex]