Respuesta :

We are given the following equation:

[tex]3^{x-3}=81[/tex]

First, we will use the following property of exponents:

[tex]a^{x+y}=a^xa^y[/tex]

Applying the property we get:

[tex]3^x3^{-3}=81[/tex]

Now, we divide both sides by 3^-3:

[tex]3^x=\frac{81}{3^{-3}}[/tex]

Now, we use the following property of exponentials:

[tex]a^{-x}=\frac{1}{a^x}[/tex]

Applying the property we get:

[tex]3^x=(81)(3^3)[/tex]

Solving the product of the right side:

[tex]3^x=2187[/tex]

Now, we take the natural logarithm to both sides:

[tex]ln3^x=ln2187[/tex]

Now, we use the following property of logarithms:

[tex]lnx^y=ylnx[/tex]

Applying the property we get:

[tex]xln3=ln2187[/tex]

Dividing both sies by ln3 we get:

[tex]x=\frac{ln2187}{ln3}[/tex]

Solving the operations:

[tex]x=7[/tex]

Therefore, the exact solution of the equation is 7.

The solution rounded to three decimal places is 7.000