Given the numbers:
[tex]\begin{gathered} \frac{3}{8} \\ \\ 1\frac{3}{5} \\ \\ 5 \end{gathered}[/tex]You can identify that the second number is written as a Mixed Number. You can rewrite it as a fraction by multiplying the whole number part by the denominator of the fraction, and then adding the Product to the numerator. The denominator does not change:
[tex]1\frac{3}{5}=\frac{(1\cdot5)+3}{5}=\frac{5+3}{5}=\frac{8}{5}[/tex]By definition, a Product is the result of a Multiplication. Therefore, you must multiply the given numbers, in order to find their Product (remember that an Integer can be written as a fraction with denominator 1).
Then, you can set up the Multiplication:
[tex]\frac{3}{8}\cdot\frac{8}{5}\cdot\frac{5}{1}[/tex]To multiply fractions, you must multiply the numerators of the fractions and multiply the denominators. Therefore, you get:
[tex]=\frac{3\cdot8\cdot5}{8\cdot5\cdot1}=\frac{120}{40}=3[/tex]Hence, the answer is:
[tex]=3[/tex]