Find the vertical asymptotes and holes for the graph of the rational function. y = (x+2)(x-5) / (x-5)(x+3)Identify any vertical asymptotes for the graph of the function. Select all that apply.

Find the vertical asymptotes and holes for the graph of the rational function y x2x5 x5x3Identify any vertical asymptotes for the graph of the function Select a class=

Respuesta :

To find out the vertical asymptotes, you must find out which value equals the denominator to 0.

In this case will be:

x=5 and x -3 because:

[tex]\begin{gathered} Y=\text{ }\frac{(x\text{ -2\rparen\lparen x+5\rparen}}{(x\text{ -5\rparen \lparen x + 3\rparen}} \\ y=\frac{(x-2)(x+5\rparen}{(5\text{ -5\rparen \lparen x+3\rparen}} \\ y=\text{ }\frac{(x-2\rparen(x+5\rparen}{0} \\ y=\text{ undefined} \\ \\ y=\frac{(x-2\rparen(x+5\rparen}{(x\text{ -5\rparen\lparen-3 + 3\rparen}} \\ y=\text{ }\frac{(x-2\rparen(x+5\rparen}{0} \\ y=undefined \end{gathered}[/tex]

The answers are:

x=5 and x= -3