Find the vertical asymptotes and holes for the graph of the rational function. y = (x+2)(x-5) / (x-5)(x+3)Identify any vertical asymptotes for the graph of the function. Select all that apply.

To find out the vertical asymptotes, you must find out which value equals the denominator to 0.
In this case will be:
x=5 and x -3 because:
[tex]\begin{gathered} Y=\text{ }\frac{(x\text{ -2\rparen\lparen x+5\rparen}}{(x\text{ -5\rparen \lparen x + 3\rparen}} \\ y=\frac{(x-2)(x+5\rparen}{(5\text{ -5\rparen \lparen x+3\rparen}} \\ y=\text{ }\frac{(x-2\rparen(x+5\rparen}{0} \\ y=\text{ undefined} \\ \\ y=\frac{(x-2\rparen(x+5\rparen}{(x\text{ -5\rparen\lparen-3 + 3\rparen}} \\ y=\text{ }\frac{(x-2\rparen(x+5\rparen}{0} \\ y=undefined \end{gathered}[/tex]The answers are:
x=5 and x= -3