Respuesta :

The given figure is :

In the given figure, there are three triangles that are lie on the triangular base

The dimension of triangular base :

Height = 10.4 ft, Base = 12 ft

[tex]\begin{gathered} \text{ Area of triangle = }\frac{1}{2}\times Base\times Altitude \\ \text{ Area of triangle=}\frac{1}{2}\times10.4\times12 \\ \text{ Area of trianglur base=}62.4ft^2 \end{gathered}[/tex]

The dimension of the side triangular is :

Height = 9ft, base = 12ft

[tex]\begin{gathered} \text{ Area of triangle= }\frac{1}{2}\times9\times12 \\ \text{ Area of triangle=}54ft^2 \\ \text{ Area of thr}ee\text{ triangle=3}\times54 \\ \text{ Area of thre}e\text{ triangle= }162ft^2 \end{gathered}[/tex]

The surface area of the pyramid = Area of three triangles + Area of triangular base

The surface area of the pyramid=162 + 62.4

The surface area of the pyramid = 224.4 ft²

Answer : 224.4 ft²

Ver imagen JonasX641043