Respuesta :

Since the time of the half-life is 3 hours, then we have to divide the number of hours given by 3

The form of the exponential function is

[tex]D(t)=a(b)^{\frac{t}{n}}[/tex]

a is the initial amount

b is the factor of increasing or decreasing

In our situation:

Half-life means b = 1/2

Since the initial amount given is 20 mg, then

a = 20

Since the time of half-life is 3 hours, then

t must be the time divided by 3

The function which represents the situation is

[tex]D(t)=20(\frac{1}{2})^{\frac{t}{3}}[/tex]

Since t = 3, then

[tex]\begin{gathered} f(3)=20(\frac{1}{2})^{\frac{3}{3}} \\ f(3)=20(\frac{1}{2})^1 \\ f(3)=10\text{ mg} \end{gathered}[/tex]

a.

At t = 6

[tex]\begin{gathered} f(\frac{6}{3})=20(\frac{1}{2})^{\frac{6}{3}} \\ f(2)=20(\frac{1}{2})^2 \\ f(2)=20(\frac{1}{4}) \\ f(2)=5\text{ mg} \end{gathered}[/tex]

At t = 9

[tex]\begin{gathered} f(9)=20(\frac{1}{2})^{\frac{9}{3}} \\ f(9)=20(\frac{1}{2})^3 \\ f(9)=20(\frac{1}{8}) \\ f(9)=2.5\text{ mg} \end{gathered}[/tex]

b.

To find the amount at t = 10 hours, substitute t by 10

[tex]\begin{gathered} f(10)=20(\frac{1}{2})^{\frac{10}{3}} \\ f(10)=1.98425\text{ mg} \end{gathered}[/tex]

We know that by using the exponential function above

2.

The function form is

[tex]D(t)=A(\frac{1}{2})^{\frac{t}{n}}[/tex]

Where A = 20 -------- initial amount

n = 3 ------- the period of half-life

The formula is

[tex]D(t)=20(\frac{1}{2})^{\frac{t}{3}}[/tex]

3.

The drug remains after 1 hour means substitute t by 1 first, then divide the answer by the initial amount, and change it to percent

[tex]\begin{gathered} D(1)=20(\frac{1}{2})^{\frac{1}{3}} \\ D(1)=15.87401052 \end{gathered}[/tex]

We will find the percent

[tex]\begin{gathered} \text{ \%D=}\frac{15.87401052}{20}\times100\text{ \%} \\ \text{ \%D=79.37\%} \end{gathered}[/tex]

To find the percent of the amount eliminated subtract 79.37% from 100%

[tex]\text{ \%E=100\%-79.37=20.63\%}[/tex]

4.

The direction for adults is

Do not exceed 4 doses per 24 hours

5.

Since the table has a period of 2 hours, then we will use t = 2, 4, 6, 8, 10, 12 in the formula above to find the amount of Dex.

[tex]\begin{gathered} D(2)=20(\frac{1}{2})^{\frac{2}{3}}=12.599\text{ mg} \\ D(4)=20(\frac{1}{2})^{\frac{4}{3}}=7.937\text{ mg} \end{gathered}[/tex][tex]\begin{gathered} D(6)=20(\frac{1}{2})^{\frac{6}{3}}=5\text{ mg} \\ D(8)=20(\frac{1}{2})^{\frac{8}{3}}=3.150\text{ mg} \end{gathered}[/tex][tex]\begin{gathered} D(10)=20(\frac{1}{2})^{\frac{10}{3}}=1.984\text{ mg} \\ D(12)=20(\frac{1}{2})^{\frac{12}{3}}=1.25\text{ mg} \end{gathered}[/tex]