Respuesta :

Answer:

The radius is changing at a rate of 2 cm/s

Explanation:

Here, we want to get the rate at which the radius of the balloon is changing

Mathematically, the formula for the volume of a sphere is:

[tex]\begin{gathered} V\text{ = }\frac{4}{3}\times\pi\times r^3^{}^{} \\ \\ \frac{dv}{dr}\text{ = 4}\times\pi\times r^2 \end{gathered}[/tex]

From the question:

[tex]\frac{dv}{dt}\text{ = 1231.5 }[/tex][tex]\frac{dr}{dt}\text{ = ?}[/tex][tex]\frac{dr}{dt}\text{ = }\frac{dv}{dt}\times\frac{dr}{dv}[/tex]

dr/dv is the reciprocal of dv/dr

Thus, we have it that:

[tex]\begin{gathered} \frac{dr}{dt}\text{ = 1231.5 }\times\frac{1}{4\times3.142\times7^2} \\ \\ \frac{dr}{dt}\text{ = 2 }\frac{cm}{s} \end{gathered}[/tex]