Respuesta :

The given expression is

[tex]2\log _75+\log _7x=\log _7100[/tex]

First, we have to use the power property of logarithms, which states

[tex]a\log x=\log x^a[/tex]

So, we have

[tex]\log _75^2+\log _7x=\log _7100[/tex]

Now, we use the product property of logarithm, which states

[tex]\log a+\log b=\log a\cdot b[/tex]

Then, we have

[tex]\log _75^2\cdot x=\log _7100[/tex]

We can eliminate logarithms

[tex]5^2\cdot x=100[/tex]

Now, we solve for x

[tex]\begin{gathered} 25x=100 \\ x=\frac{100}{25}=4 \end{gathered}[/tex]

Therefore, the right answer is 4.