111 yards
Explanation
Step 1
to solve this we need to know the equivalence
[tex]\begin{gathered} 3\text{ ft= 1 yd} \\ 3\text{ ft}\leftrightarrow1\text{ yd} \end{gathered}[/tex]Now, we can apply a rule of three
let x represents the number of yards in 333 ft, so
so
[tex]\begin{gathered} if \\ 3\text{ ft}\rightarrow\text{ 1 yd} \\ \text{then} \\ 33\text{ ft}\rightarrow x \end{gathered}[/tex]as the ratio is the same, we have a proportion
[tex]\begin{gathered} \frac{3\text{ ft}}{1\text{ yd}}=\frac{33\text{ ft}}{x\text{ yd}} \\ \frac{3}{1}=\frac{33}{x} \end{gathered}[/tex]Step 2
now, solve for x
[tex]\begin{gathered} \frac{3}{1}=\frac{333}{x} \\ \text{cross multiply} \\ 3\cdot x=333\cdot1 \\ 3x=333 \\ \text{divide both } \\ \frac{3x}{3}=\frac{333}{3} \\ x=111 \end{gathered}[/tex]so, the answer is 111 yards
I hope this helps you