Respuesta :

Given the expression:

[tex]\sum ^{\infty}_{n\mathop=1}(\frac{2n!}{2^{2n}})[/tex]

a) What is the value of (r) from the ratio test?

The value of (r) will be calculated using the following formula:

[tex]r=\lim _{n\rightarrow\infty}|\frac{a_{n+1}}{a_n}|[/tex]

So, we will calculate it as follows:

[tex]\begin{gathered} a_n=(\frac{2n!}{2^{2n}}) \\ a_{n+1}=(\frac{2(n+1)!}{2^{2(n+1)}}) \end{gathered}[/tex]

Substitute into the formula, then find the limit

[tex]\begin{gathered} r=\lim _{n\rightarrow\infty}(\frac{2(n+1)!}{2^{2(n+1)}}\times\frac{2^{2n}}{2n!}) \\ \\ =\lim _{n\rightarrow\infty}(\frac{2(n+1)!}{2n!}\times\frac{2^{2n}}{2^{2(n+1)}}) \end{gathered}[/tex]

Simplify:

[tex]\begin{gathered} r=\lim _{n\rightarrow\infty}(\frac{2(n+1)\cdot n!}{2n!}\times\frac{2^{2n}}{2^{2n}\cdot2^2}) \\ \\ =\lim _{n\rightarrow\infty}(\frac{n+1}{2^2})=\lim _{n\rightarrow\infty}\frac{n+1}{4}=\infty \end{gathered}[/tex]

So, the value of r = ∞

b) What does this (r) value tell you about the series?

As shown r = ∞ > 1

so, the series diverges