MLG is a 30°-60°-90° triangle and LM= 40 in. Find GL.

To solve this, we can use the trigonometric function tangent.
[tex]\tan \theta=\frac{ol}{al}[/tex]Where ol is the length of the opposite leg to angle θ and al is the anjacent leg to angle θ.
By taking the tangent of the angle whose measure equals 30°, we get:
[tex]\tan 30=\frac{GL}{LM}[/tex]By solving for GL and replacing 40 for LM, we get:
[tex]\begin{gathered} GL=LM\times\tan 30 \\ GL=40\times\tan 30 \\ GL=\frac{40\sqrt[]{3}}{3} \end{gathered}[/tex]Then, the length of GL equals 40√3/3