Respuesta :

To solve this, we can use the trigonometric function tangent.

[tex]\tan \theta=\frac{ol}{al}[/tex]

Where ol is the length of the opposite leg to angle θ and al is the anjacent leg to angle θ.

By taking the tangent of the angle whose measure equals 30°, we get:

[tex]\tan 30=\frac{GL}{LM}[/tex]

By solving for GL and replacing 40 for LM, we get:

[tex]\begin{gathered} GL=LM\times\tan 30 \\ GL=40\times\tan 30 \\ GL=\frac{40\sqrt[]{3}}{3} \end{gathered}[/tex]

Then, the length of GL equals 40√3/3