Explanation:
Given that:
[tex]\begin{gathered} Warm:61,100,13,96,68,89,80,74,96,56 \\ Cool:53,7,73,4,70,82,73,40,50,10 \end{gathered}[/tex]
1.
Graph 1 (Warm):
Graph 2 (Cool):
2. The measure of center and variability is shown below:
Mean:
[tex]\begin{gathered} \mu=\frac{\Sigma f(x)}{N} \\ \\ Warm \\ \begin{equation*} \mu=\frac{61+100+13+96+68+89+80+74+96+56}{10} \end{equation*} \\ \mu=\frac{733}{10}=73.3 \\ \mu=73.3 \\ \\ Cool \\ \begin{equation*} \mu=\frac{53+7+73+4+70+82+73+40+50+10}{10} \end{equation*} \\ \mu=\frac{462}{10}=46.2 \\ \mu=46.2 \end{gathered}[/tex]
Median:
[tex]\begin{gathered} Warm \\ \text{Arrange data set in ascending order:} \\ 13,56,61,68,74,80,89,96,96,100 \\ Median=\frac{74+80}{2} \\ Median=\frac{154}{2}=77 \\ Median=77 \\ \\ Cool \\ \text{Arrange the data in ascending order:} \\ 4,7,10,40,50,53,70,73,73,80 \\ Median=\frac{50+53}{2} \\ Median=\frac{103}{2}=51.5 \\ Median=51.5 \end{gathered}[/tex]